$\mathrm{Ca}-\mathrm{OW}$	2.441 (9)	$\mathrm{I}-\mathrm{H}^{\text {x1 }}$	3.10 (4)
$\mathrm{Ca}-\mathrm{O}^{\text {¹' }}$	2.454 (3)	$\mathrm{I}-\mathrm{H}^{* 10}$	3.10 (4)
$\mathrm{Ca}-\mathrm{O}^{\prime}$	2.454 (3)	$\mathrm{I}-\mathrm{H}$	3.10 (4)
$\mathrm{Ca}-\mathrm{O}^{1 \times}$	2.454 (3)	$\mathrm{I}-\mathrm{H}^{\times 11}$	3.10 (4)
O-H	0.92 (2)		
$\begin{aligned} & \text { Symmetry codes: (i) }-x,-y,-z ; \text { (ii) }-x+y,-x, z ; \text { (iii) }-y, x-y, z ; \text { (iv) } \\ & x-y, x,-z ;(\mathrm{v}) y,-x+y,-z ;(\text { vi) } 1-y, x-y, z ; \text { (vii) } 1-x+y, 1-x, z ; \\ & \text { (viii) } 1+x-y, x,-z ; \text { (ix) } 1-x, 1-y,-z ;(\mathrm{x}) \frac{2}{3}-x, \frac{4}{3}-y, \frac{1}{3}-z ; \text { (xi) } \\ & \frac{2}{3}+x-y, \frac{1}{3}+x, \frac{1}{3}-z ; \text { (xii) } y-\frac{1}{3}, \frac{1}{3}-x+y, \frac{1}{3}-z ;(\text { (xiii) } 1-y, 1+x-y, z ; \\ & \text { (xiv) }-x+y, 1-x, z \text {. } \end{aligned}$			

Table 3. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}-\mathrm{H} \cdots \mathrm{I}$	$0.92(2)$	$3.10(4)$	$3.911(3)$	$148(5)$
$\mathrm{OW}-\mathrm{H} W \cdots \mathrm{I}$	$0.95(2)$	$2.78(8)$	$3.620(3)$	$148(11)$

The structure was refined in the $R \overline{3}$ space group. Attempts to refine the model in the non-centrosymmetric $R 3$ space group did not lead to a better fit. The H atoms of the hydroxy group and water molecule were located from a difference Fourier map and allowed to refine subject to an O-H DFIX restraint of $0.95 \AA$, with a fixed individual isotropic displacement parameter $U_{\mathrm{iso}}=1.2 U_{\mathrm{cq}}(\mathrm{O})$. The O atom (OW) of the water molecule was located on a special site, $6(c)$, whereas its H atoms occupy the general site, $18(f)$, with an occupancy factor of $\frac{2}{3}$.
Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: DREAM (Blessing, 1987). Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ATOMS (Dowty, 1995).

The authors are grateful to the Service Commun de Diffractométrie Automatique of the Université Henri Poincaré and to Alain Rouiller from CRPG for his help in the preparation of the hydrothermal syntheses.

[^0]
References

Allmann, R. (1977). Neues Jahrb. Mineral. Monatsh. 3, 136-144.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Blessing, R. H. (1987). Crystallogr. Rev. 1, 3-58.
Blessing, R. H. (1995). Acta Crvist. A51, 33-38.
Dowty, E. (1995). ATOMS for Windows. Version 3.1. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663. USA.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands
François, M., Renaudin, G. \& Evrard, O. (1998). Acta Cryst. C54, 1214-1217.
Renaudin, G. \& François, M. (1999). Acta Cryst. C55, 835-838.
Renaudin, G., François, M. \& Evrard, O. (1999). Cem. Concr. Res. 29, 63-69.
Renaudin, G., Kubel, K., Rivera, J.-P. \& François, M. (1999). Cem. Concr. Res. Accepted.
Shannon, R. D. (1976). Acta Cryst. A32, 751-767
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Terzis, A., Filippakis, S., Kuzel, H.-J. \& Burzlaff, H. (1987). Z. Kristallogr. 181, 29-34.

Acta Cryst. (1999). C55, 1959-1961

$\mathbf{K C u}_{\mathbf{2}} \mathbf{V S e}_{4}$

Ralf Tillinski, Christian Näther and Wolfgang Bensch
Institut für Anorganische Chemie, Christian-AlbrechtsUniversität Kiel, Olshausenstraße 40, D-24098 Kiel, Germany. E-mail: wbensch@ac.uni-kiel.de

(Received 19 July 1999; accepted 6 September 1999)

Abstract

The reaction of Cu and V in a $\mathrm{K}_{2} \mathrm{Se}_{5}$ melt yields black crystals of potassium dicopper vanadium tetraselenide, $\mathrm{KCu}_{2} \mathrm{VSe}_{4}$. The structure is comprised of $\left[\mathrm{Cu}_{2} \mathrm{VSe}_{4}\right]^{-}$ layers within the (010) plane separated by K^{+}cations. The layers consist of a network of edge- and cornersharing [VSe_{4}] and $\left[\mathrm{CuSe}_{4}\right.$] tetrahedra parallel to (010).

Comment

The structure determination of the title compound was undertaken as part of a project on the systematic investigation of the $A / \mathrm{Cu} / \mathrm{V} / Q$ system $(A=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; Q=$ S, Se). Recently, a number of one- and two-dimensional compounds were synthesized and characterized within this system, e.g. $\mathrm{K}_{2} \mathrm{CuVS}_{4}$ (Dürichen \& Bensch, 1996), $\mathrm{K}_{2} \mathrm{CuVSe}_{4}$ (Rumpf, Tillinski et al., 1997) and $\mathrm{KCu}_{2} \mathrm{VS}_{4}$ (Bensch et al., 1996).
$\mathrm{KCu}_{2} \mathrm{VSe}_{4}$ is isostructural with $\mathrm{KCu}_{2} \mathrm{VS}_{4}, \mathrm{NaCu}_{2}-$ NbS_{4} (Rumpf, Näther et al., 1997) and $\mathrm{KCu}_{2} \mathrm{NbS}_{4}(\mathrm{Lu}$ \& Ibers, 1991). The structure is built up by chains of corner-sharing [VSe_{4}] and [CuSe_{4}] tetrahedra. These $[\mathrm{CuVSe} 4]_{n}^{2 n-}$ chains are linked into layers by $\left[\mathrm{CuSe}_{4}\right]$ tetrahedra which share edges between [VSe_{4}] tetrahedra on neighbouring chains. The $\left[\mathrm{Cu}_{2} \mathrm{VSe}_{4}\right]^{-}$layers are within the (010) plane and are separated by K^{+}cations.

The shortest interlayer Se \cdots Se distance is 3.783 (2) \AA. There are three crystallographically distinct metal atoms, i.e. $\mathrm{Cu} 1, \mathrm{Cu} 2$ and V . All have a distorted tetrahedral coordination of four Se atoms. The average $M-\mathrm{Se}$ distances are 2.399 (2) \AA for $M=\mathrm{Cu}$ and 2.324 (2) \AA for $M=\mathrm{V}$, and lie within the normal range. The $\mathrm{Se}-\mathrm{Cu}-\mathrm{Se}$ angles about the two independent Cu atoms indicate stronger distorted tetrahedral environments [105.09(4)-112.22(3) for Cul and 104.32 (4)$119.17(4)^{\circ}$ for Cu 2$]$ than for the VSe_{4} tetrahedron, with $\mathrm{Se}-\mathrm{V}-\mathrm{Se}$ angles deviating less from ideal values [108.09 (3)-110.36(5) ${ }^{\circ}$. Because the [$M \mathrm{Se}_{4}$] tetrahedra are connected via common edges, the large differences in the $\mathrm{Cu}-\mathrm{Se}$ and $\mathrm{V}-\mathrm{Se}$ bond lengths must lead to severe distortions which primarily affect the [CuSe ${ }_{4}$] tetrahedra. The V. . Cu distances are 2.777 (1), 2.788 (1) and 2.775 (1) \AA [average 2.779 (2) \AA A , which are far too long for bonding interactions. As expected, the distances are
slightly longer than those observed in $\mathrm{KCu}_{2} \mathrm{VS}_{4}$ (average 2.70 A). Each K^{+}cation is coordinated by nine Se atoms and the resulting polyhedra may be described as distorted tricapped trigonal prisms. The K...Se distances range from 3.361 (2) to 3.822 (1) \AA, with an average of 3.599 (2) \AA, which is just the sum of the ionic radii.

Fig. 1. The crystal structure of $\mathrm{KCu}_{2} \mathrm{VSe}_{4}$ viewed along the c axis.

Experimental

$\mathrm{KCu}_{2} \mathrm{VSe}_{4}$ was prepared by the reaction of $\mathrm{K}_{2} \mathrm{Se}_{5}, \mathrm{Cu}$ and V in the ratio 6:2:1. $\mathrm{K}_{2} \mathrm{Se}_{5}$ was prepared from stoichiometric amounts of K and Se in liquid ammonia under an argon atmosphere. The starting materials were mixed thoroughly in a dry-box and sealed into a Pyrex-glass ampoule, which was evacuated at $1.0 \times 10^{-3} \mathrm{mbar}\left(1 \mathrm{bar}=10^{5} \mathrm{~Pa}\right)$. The ampoule was heated at 673 K for 6 d and then cooled to 293 K at a rate of $3 \mathrm{~K} \mathrm{~h}^{-1}$. The resulting melt was washed with dimethylformamide and diethyl ether. Finally, the residue was dried in a vacuum.

Crystal data

$\mathrm{KCu}_{2} \mathrm{VSe}_{4}$
$M_{r}=532.96$
Orthorhombic
Ama 2
$a=7.5803$ (8) \AA
$b=18.4838(12) \AA$
$c=5.5653(5) \AA$
$V=779.77(12) \AA^{3}$
$Z=4$
$D_{x}=4.540 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Stoe AEDII four-circle diffractometer ω / θ scans
Absorption correction:
empirical (XEMP in
SHELXTLPC; Siemens, 1990)
$T_{\text {min }}=0.407, T_{\text {max }}=0.598$
2108 measured reflections
670 independent reflections (plus 411 Friedel-related reflections)

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.047$
$S=1.036$
1081 reflections
46 parameters
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0240 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.594 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.672 \mathrm{e}^{-3}$
925 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.027$
$\theta_{\text {max }}=30.01^{\circ}$
$h=0 \rightarrow 10$
$k=-26 \rightarrow 26$
$l=-7 \rightarrow 4$
4 standard reflections frequency: 120 min intensity decay: negligible

Table 1. Fractional atomic coordinates and equivalent

 isotropic displacement parameters $\left(\AA^{2}\right)$Extinction correction: SHELXL93
Extinction coefficient: 0.0056 (2)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)
Flack parameter $=0.03(2)$

	x	y	z	$U_{\text {eq }}$
V	1/4	0.39050 (5)	0.2500 (2)	0.0129 (2)
CuI	1/4	0.39107 (5)	0.7510 (2)	0.0200 (2)
Cu 2	1/2	1/2	0.22943 (15)	0.0204 (2)
Sel	1/4	0.49517 (2)	0.49423 (10)	0.01578 (12)
Se2	0.50193 (4)	0.38821 (2)	0.01146 (8)	0.02095 (10)
Se3	1/4	0.28918 (3)	0.4836 (2)	0.0329 (2)
K1	1/4	0.68415 (8)	0.4905 (4)	0.0422 (3)

Table 2. Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$

$\checkmark-\mathrm{Se} 3$	2.2797 (13)	$\mathrm{Cu} 2-\mathrm{Se} 2$	2.3961 (6)
$\mathrm{V}-\mathrm{Se} 2$	2.3262 (8)	$\mathrm{Cu} 2-\mathrm{Se} 1$	2.4023 (7)
V -Sel	2.3644 (11)	K1-Sel	3.493 (2)
$V-\mathrm{Cu} 2$	2.7750 (7)	$\mathrm{K} 1-\mathrm{Se} 3^{\text {in }}$	3.361 (2)
$\mathrm{V}-\mathrm{Cul}{ }^{1}$	2.7773 (12)	$\mathrm{Kl}-\mathrm{Se} 3^{\text {1/ }}$	3.425 (2)
V -Cul	2.7881 (12)	$\mathrm{KI}-\mathrm{Se} 2^{\text { }}$	3.526 (2)
Cul-Sel	2.3966 (10)	K1-Se2 ${ }^{\prime \prime}$	3.706 (2)
Cul -Se2 ${ }^{\text {¹ }}$	2.3982 (7)	$\mathrm{Kl}-\mathrm{Se} 3^{\prime \prime \prime}$	3.8222 (4)
$\mathrm{Cul}-\mathrm{Se} 3$	2.4003 (10)		
$\mathrm{Sc} 3-\mathrm{V}-\mathrm{Sc} 2$	108.09 (3)	Se 2 "-Cul-Se3	110.94 (3)
$\mathrm{Se} 2^{\text {'"II }}-\mathrm{V}-\mathrm{Se} 2$	110.36 (5)	V^{i} - $\mathrm{Cul}-\mathrm{V}$	179.57 (7)
$\mathrm{Se} 3-\mathrm{V}-\mathrm{Sel}$	110.14 (5)	$\mathrm{Se} 2-\mathrm{Cu} 2-\mathrm{Se} 2^{\mathrm{vi} \mathrm{\prime}}$	119.17 (4)
$\mathrm{Se} 2-\mathrm{V}-\mathrm{Se} 1$	110.06 (3)	$\mathrm{Se} 2-\mathrm{Cu} 2-\mathrm{Se} 1^{\text {vii }}$	109.744 (14)
$\mathrm{Sel}-\mathrm{Cul}-\mathrm{Sc} 2^{11}$	112.22 (3)	$\mathrm{Se} 2-\mathrm{Cu} 2-\mathrm{Sel}$	106.459 (14)
$\mathrm{Se} 2^{1 i}-\mathrm{Cul}-\mathrm{Se}^{2 \mathrm{ix}}$	105.56 (4)	Sel ${ }^{\text {vii }}$ - $\mathrm{Cu} 2-\mathrm{Sel}$	104.32 (4)
$\mathrm{Se} 1-\mathrm{Cu} 1-\mathrm{Se} 3$	105.09 (4)	$\mathrm{V}-\mathrm{Cu} 2-\mathrm{V}^{\mathrm{vi} \mathrm{\prime}}$	175.27 (5)

Symmetry codes: (i) $x, y, z-1$; (ii) $x, y, 1+z$; (iii) $x, \frac{1}{2}+y, \frac{1}{2}+z$; (iv) $x, \frac{1}{2}+y, z-\frac{1}{2} ;$ (v) $x-\frac{1}{2}, 1-y, z ;$ (vi) $1-x, 1-y, 1+z$; (vii) $1-x, 1-y, z$; (viii) $\frac{1}{2}-x, y, z$; (ix) $\frac{1}{2}-x, y, 1+z$.

Data collection: DIF4 (Stoe \& Cie, 1991a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1991b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Software used to prepare material for publication: CIFTAB in SHELXL93.

This work is supported by the state of SchleswigHolstein.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1321). Services for accessing these data are described at the back of the journal.

References

Bensch, W., Dürichen, P. \& Weidlich, C. (1996). Z. Kristallogr. 211, 933.

Dürichen, P. \& Bensch, W. (1996). Eur. J. Solid State Inorg. Chem. 33, 309-320.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Lu, Y.-J. \& Ibers, J. A. (1991). J. Solid State Chem. 94, 381-385.
Rumpf, C., Näther, C., Jess, I. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1165-1177.
Rumpf, C., Tillinski, R., Näther, C., Dürichen, P., Jess, I. \& Bensch, W. (1997). Eur. J. Solid State Inorg. Chem. 34, 1187-1198.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1990). SHELXTLJPC. Program Package for the Solution, Refinement and Graphical Presentation of Crystal Structures. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1991a). DIF4. Diffractometer Control Program. Version 7.09X/DOS. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1991b). REDU4. Data Reduction Program. Version 7.03. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 1961-1963

Ammonium trivanadate(\mathbf{V}), $\mathbf{N H}_{\mathbf{4}} \mathbf{V}_{\mathbf{3}} \mathbf{O}_{\mathbf{8}}$

Bi-Zhou Lin and Shi-Xiong Liu
Department of Chemistry, Fuzhou University, Fuzhou 350002, People's Republic of China. E-mail: sxliu@fzu. edu.cn

(Received 23 February 1999; accepted 4 June 1999)

Abstract

The structure of the title compound is made up of vanadium oxide layers, with NH_{4}^{+}cations intercalated between the layers. Each pair of VO_{5} square pyramids is bridged by an edge to form a double $\mathrm{V}_{2} \mathrm{O}_{8}$ group. The $\mathrm{V}_{2} \mathrm{O}_{8}$ groups are connected by sharing corners to produce a twisted zigzag chain. Each VO_{6} octahedron is connected to two $\mathrm{V}_{2} \mathrm{O}_{8}$ groups by two edges and to another two $\mathrm{V}_{2} \mathrm{O}_{8}$ groups by two corners. Hence, the twisted zigzag chains are held together through VO_{6} octahedra by sharing corners and edges to form a layer

structure. There are $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between the vanadium oxide layer and the $\mathrm{NH}_{4}^{\dagger}$ cations.

Comment

$\mathrm{NH}_{4} \mathrm{~V}_{3} \mathrm{O}_{8}$ was first prepared by Norblad (1875) and is one stable solid phase in the $\mathrm{NH}_{3}-\mathrm{V}_{2} \mathrm{O}_{5}-\mathrm{H}_{2} \mathrm{O}$ system at 303 K (Kelmers, 1961a). Based on X-ray powder diffraction, Kelmers revealed that $\mathrm{NH}_{4} \mathrm{~V}_{3} \mathrm{O}_{8}$ was probably isostructural with $\mathrm{KV}_{3} \mathrm{O}_{8}, \mathrm{RbV}_{3} \mathrm{O}_{8}$ and $\mathrm{CsV}_{3} \mathrm{O}_{8}$ (Kelmers, 1961b). The crystal structures of $\mathrm{KV}_{3} \mathrm{O}_{8}$ and $\mathrm{CsV}_{3} \mathrm{O}_{8}$ were described by Block and Evens (Block, 1960; Evens \& Block, 1966). However, powder diffraction techniques were inadequate for revealing the detailed structure or for confirming the possibility of hydrogen bonding in the title compound. We report herein the hydrogen bonding in the crystal structure of the title compound and two new synthetic routes for its preparation.

As illustrated in Fig. 1, the structure of $\mathrm{NH}_{4} \mathrm{~V}_{3} \mathrm{O}_{8}$ consists of layers fused by VO_{5} square pyramids and VO_{6} octahedra, with ammonium cations occupying the interlayer positions. The VO_{5} square pyramids are connected in pairs by sharing an edge to form a $\mathrm{V}_{2} \mathrm{O}_{8}$ group. In the $\mathrm{V}_{2} \mathrm{O}_{8}$ group, the two apices of the two square pyramids point away from each other (Fig. 2). The $\mathrm{V}_{2} \mathrm{O}_{8}$ groups are joined through corners (O4) into a twisted zigzag chain along the b axis. One VO_{6} octahedron and two $\mathrm{V}_{2} \mathrm{O}_{8}$ groups are linked by sharing

Fig. 1. The structure of $\mathrm{NH}_{4} \mathrm{~V}_{3} \mathrm{O}_{8}$ viewed along the a axis, showing the buckled layers and the interlayer hydrogen bonds (dashed lines). The N and H atoms are represented by large cross-hatched circles and small open circles, respectively.

[^0]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1245). Services for accessing these data are described at the back of the journal.

